Conservation of Momentum in Two Dimensions

During a glancing collision, the objects involved are deflected in more than one dimension. In a typical curling shot, for example, the stones that collide move away at various angles because the collision was not a head-on collision.

Example 1

Two identical curling stones of mass 19.5 kg collide. The first stone hits the stationary second stone with a velocity of $5.0 \mathrm{~m} / \mathrm{s}[\mathrm{N}]$. If the velocity of the first stone is $3.2 \mathrm{~m} / \mathrm{s}\left[30^{\circ} \mathrm{W}\right.$ of N$]$ after the collision, find the velocity of the second stone after the collision. Assume friction is not a factor.

Example 2

A 5.0 kg bomb at rest explodes into three pieces, each of which travels parallel to the ground. The first piece, with a mass of 1.2 kg , travels at $5.5 \mathrm{~m} / \mathrm{s}$ at an angle of $20^{\circ} S$ of E. The second piece has a mass of 2.5 kg and travels $4.1 \mathrm{~m} / \mathrm{s}$ at an angle of $25^{\circ} \mathrm{N}$ of E. Determine the velocity of the third piece.

Momentum Worksheet \#4

1. A 2.0 kg steel ball rolling at $5.0 \mathrm{~m} / \mathrm{s}[\mathrm{W}]$ strikes a second steel ball of equal mass at rest. After a glancing collision, the first ball is deflected $\left[35^{\circ} \mathrm{W}\right.$ of N$]$ at $3.0 \mathrm{~m} / \mathrm{s}$. Determine the velocity of the second ball. ($4.1 \mathrm{~m} / \mathrm{s}\left[37^{\circ} \mathrm{S}\right.$ of W$]$)
2. A hockey player of mass 85 kg , traveling at $15 \mathrm{~m} / \mathrm{s}[\mathrm{N}]$, collides with another hockey player of mass 70 kg traveling at $5.0 \mathrm{~m} / \mathrm{s}[E]$. If the two players lock skates during the collision and are held together, find the resultant velocity of the pair. ($8.3 \mathrm{~m} / \mathrm{s}\left[16^{\circ} E\right.$ of $\left.\left.N\right]\right)$
3. A 0.5 kg grenade explodes horizontally into three pieces. The first piece has a velocity of $10 \mathrm{~m} / \mathrm{s}[\mathrm{N}]$ and a mass of 0.10 kg . The second piece has a velocity of $5.0 \mathrm{~m} / \mathrm{s}\left[10^{\circ} E\right.$ of $\left.S\right]$ and a mass of 0.20 kg . Find the velocity of the third piece. ($0.87 \mathrm{~m} / \mathrm{s}\left[5^{\circ} \mathrm{S}\right.$ of W$\left.]\right)$
4. A billiard ball of mass 0.50 kg , moving with a velocity of $2.0 \mathrm{~m} / \mathrm{s}$ [forward], strikes a second ball of mass 0.30 kg , initially at rest. A glancing collision causes the first ball to be deflected at an angle 30° to the left of its original direction with a speed of $1.5 \mathrm{~m} / \mathrm{s}$. Determine the velocity of the second ball after collision. ($1.7 \mathrm{~m} / \mathrm{s}\left[47^{\circ}\right.$ Right of Forward $]$)
